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What is Reuse?

• A hot buzzword?
• The newest silver bullet?
• Something greatly desired, but ever so

elusive?
• Real and practical?

“If you ask five programmers what reuse is,
you’ll get eight answers” (Steve Adolf)
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What is Reuse? (cont)

• Software Reuse != Software Salvaging
(Adolf)
– Software reuse is software that is designed

to be reused
– Software salvaging is using software that

was not designed for reuse
• We do a lot of “salvaging” in the aviation

world today, but we want to do more
“reusing”
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What is Reuse? (cont)

• A process of implementing or updating software
systems using existing software assets. (Sodhi)
– Assets can be software components, objects, software

requirement analysis and design models, domain
architecture, database schema, code documentation,
manuals, standards, test scenarios, and plans.

– Software reuse may occur within a software system,
across similar systems, or in widely different systems.

• Software reuse is the process of creating software
systems from existing software assets, rather than
building software systems from scratch. (Krueger)
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What is Reuse? (cont)

• Goal of reuse: To use as much software
data as possible from previous
development efforts in order to reduce
time, cost, and risks associated with re-
development.

“Reuse is a bet on the future” (Williams)

8
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Potential Benefits of Reuse

• Meeting business needs (addressing
the software crisis)

• Higher productivity
• Increased quality
• Quicker time to market
• Better use of resources
• Helps with system complexity issues

“Systematic reuse has the highest payback
of any technology since software began.” (Williams)
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Potential Risks of Reuse

• It requires more upfront investment
• It is a bit of a gamble on the future
• It can end up costing more, if not

done properly
• It can induce errors, if not done

properly
• It must be used cautiously in

safety-critical domains
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Reuse Myths

• Reuse is quick, easy, simple, & free.
• Buying components means no building.
• Components equal reuse.
• Reuse is just code.
• Maintenance is not building, therefore reuse

does not apply.
• Increase productivity means loss of jobs.
• Reuse means everyone must do the same

thing.
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Why Reuse Has Not Been
Utilized Much

• It isn’t taught in schools
• We have the “not invented here” attitude
• Cost is believed to be prohibitive
• Time constraints
• Culture
• Lack of experience
• Lack of tools
• Not understanding what reuse really is
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7 Concepts Relevant to
Reuse

• Planning for Reuse
• Domain Engineering
• Software Components
• Object-Oriented Technology
• Portability
• Commercial-off-the-shelf (COTS)

Software
• Product Service History
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“If you don’t know where you are going,
any road will lead you there.” (eastern saying)

18

Planning for Reuse

• Reuse doesn’t just happen.
• Reuse must be well planned.
• Reuse must be well managed.
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Reifer’s 10 Steps To
“Reuse Adoption”

• Define the company vision/strategy
• Determine company’s current reuse status
• Establish an operation concept for the company
• Develop a company business plan
• Focus early efforts on company infrastructure
• Make an initial success
• Try the ideas before they are solidified
• Strive for a success image
• Iterate & refine the process based on results
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McConnell’s Keys to
Success in Reuse

• Take advantage of personnel continuity between
old & new programs

• Do not overestimate your savings
• Secure long-term, high-level management

commitment to a reuse program
• Make reuse an integral part of the development

process
• Establish a separate reuse group
• Focus on small, sharp, domain-specific

components.
• Focus design efforts on abstraction & modularity.
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Things To Be Addressed
In Planning

• Reifer’s Steps
• McConnell’s Keys
• Safety
• Software/Software and

Software/Hardware Integration
• Portability
• Maintenance
• Re-Verification

22
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What is Domain
Engineering?

• Domain is a group or family of related
systems.  All systems in that domain
share a set of capabilities and/or data.
(Sodhi)

• Two Sides of Reuse:
– Domain engineering � Developing for reuse
– Reuse engineering � Developing with reuse

• Domain engineering is a developing field
– it is still relatively immature

24

Some Concepts of
Domain Engineering

• Knowledge reuse
• Repositories of components
• Reuse of architectural domain

knowledge
• Reuse of software designs and patterns
• Reduction of “cognitive distance”

Cognitive distance is the intellectual effort required
to take a software system from one stage 

of development to another (Girardi/Ibrahim)
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What Is A Component?
1. Prewritten elements of software with clear 

functionality and well-defined interface. (Rhodes)

2. An atomic software element that can be reused 
or used in conjunction with other components; ideally, 
it should work without modification and without the 
engineer needing to know the content and internal 
function of the component. However, the interface, 
functionality, pre-conditions, and post-conditions 
performance characteristics and required supporting 
elements must be well known. (Lattanze)



14

27

What Is A Component? (cont)

• 8110.RSC �Reusable software
component (RSC) is the software code
and its supporting DO-178B
documentation being considered for
reuse.  It forms a portion of the software
that will be implemented by the
integrator/applicant.

28

Examples of Components

• Real-time operating systems
• Software libraries
• Loading software
• Communication protocol stacks

A component is a piece of software and/or data
 that can be “chunked” by itself.
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Key Properties of a
Software Component

• The component may be
used by other program
elements.

• The users and
developers of the
software component do
not need to know each
other. (Meyer)
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3 Attributes of Software
Components

• It is reusable
• It has clear functionality

– Single purpose
– Encapsulates related functions
– Properly sized

• It has well-defined interfaces
– E.g., consistent syntax, logical design, predictable

behavior, & consistent method of error handling.
– Complete, consistent, & cohesive interfaces
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8 Qualities of Software
Components (Meyer)

• Careful specification of functionality &
interface

• Correctness – works as specified
• Robustness – doesn’t fail if used properly
• Ease of identification
• Ease of learning
• Wide-spectrum of coverage
• Consistency
• Generality – useful for multiple environments

32

Component Library

• Contains software
components/assets to be
reused throughout a company

• Library should:
– Provide seamless access to

authorized users
– Be searchable & browsable
– Be integrated into the

engineering environment
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Component Library (cont)

• Items in the library should contain:
– Design narratives – an overview of the

component
– All data that supports the component (e.g.,

plans, requirements, design, verification
records, etc.)

– Design rationale – detailed explanation of
design decisions
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Component Library (cont)

• Design Rationale
– Communicates the design decisions and

can help users determine if it meets their
needs

– Internal Design Rationale – describes
internal interaction within the component

– External Design Rationale – describes
interaction of the component with the
outside world
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Component Library (cont)

• Aspects of Libraries to be Considered:
– Format of components & assets entered

into the library should be useful &
consistent

– Best utilization of search capabilities
– Library management, operation, &

maintenance

36

Components & Safety –
Items to Consider

• Planning
• Traceability of requirements
• Re-verification
• Interface documents
• Partitioning/protection
• Artifacts
• Maintenance
• Unused code
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● IEEE Definition of OOT: “A software
development technique in which a system or
component is expressed in terms of objects
and connections between those objects”

● Centered around “objects” and “classes”

OOT Overview

Message 1 Message 2Object
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● Definition of Class:  “a
set of objects that
share a common
structure and a
common behavior”
(Booch)

OOT Overview
(2/7) Class Name

Attributes:

Operations:

40

   Typical
– abstraction
– modularity
– concurrency
– persistence

OOT Overview (3/7)

   Unique to OOT
– **encapsulation
– **hierarchy
– **typing
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● Abstraction: Helps to address complexity by providing
crisply defined boundaries.

● Modularity: The process of partitioning a program into
logically separated and defined components that possess
defined interactions and limited access to data.

● Concurrency:  Process of carrying out several events
simultaneously.

● Persistence:  Property of an object through which its
existence transcends time and/or space.

OOT Overview (4/7)
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● Encapsulation:
● The mechanism that binds together code and the data it

manipulates

● Keeps code and data safe from outside interference and
misuse

● Generally achieved through information hiding

OOT Overview (5/7)
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● Hierarchy:  The ordering of abstractions.

● Examples of hierarchy:  single inheritance and multiple
inheritance

● Sub-class  “inherits” all of the existing attributes and
operations of the original class, called the “parent” or
“superclass”

OOT Overview (6/7)

44

● Typing: Enforcement of the class of an object, such that

objects of different types may not be interchanged, or at
the most, they may be interchanged only in very restricted
ways

● Polymorphism is a concept closely related to typing.

● Polymorphism comes from the Greek meaning “many
forms.”

OOT Overview (7/7)
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OOT Methodology

OOA = Object-Oriented Analysis

OOD = Object-Oriented Design

OOP = Object-Oriented Programming

OOV/T = Object-Oriented Testing

46

OOA
Identify user 
requirements 

(use cases)

Identify classes
(attributes &

operations) (CRC)

Specify class
hierarchy

(CRC)

Identify object-
to-object

relationships (OR)

Model object
 behavior (OB)

R
eapply as needed
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OOD

• Blueprint for software construction.
• Four layers of design are usually

defined:
– subsystem layer,
– class and object layer,
– message layer, and
– responsibilities layer.
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OOP

• Examples: SmallTalk, Java, C++, Ada
95

• C++ starting to be used in airborne
avionics

• Some concerns: dynamic memory
allocation, multiple inheritance, virtual
base classes, run-time identification,
templates, exceptions, and namespaces
are deleted
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OOV/T

• Process of detecting errors and
verifying correctness of the OOA, OOD,
and OOP.  OOV/T

• Includes reviews, analyses, and tests of
the software design and implementation

50

OOV/T

• OOV/T requires slightly different strategies
and tactics than the traditional structured
approach.
– Because of inheritance, encapsulation, and

polymorphism.

• Most developers use a “design for testability”
approach to begin addressing any
verification/test issues early in the program.
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How OO Supports Reuse

• OOT helps to break complex systems
into manageable pieces

• It’s easier to implement OO design into
code (using OO languages)

• OO model-based approach supports
use of development tools

52

Safety Concerns of OOT

• Dead/Deactivated Code
• Dynamic Binding/Dispatch
• Encapsulation
• Inheritance
• Polymorphism
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Portability

• Goal of portability is transporting
software to new platforms and/or
environments with minimal adaptation.

• Portability is a desirable attribute for
most software intended for reuse.
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Portability Design
Strategies

• Identify the minimum necessary set of
environmental requirements &
assumptions.

• Eliminate all unnecessary assumptions
throughout the design.
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Portability Design
Strategies (cont)

• Identify specific environment interface required.
For each interface, either:
– Encapsulate the interface completely in a suitable

module, package, object, etc; or
– Identify a suitable standard for the interface, which is

expected to be available in most target environments.
• Anticipate the need to provide a software layer to

“bridge the gap” for environments which don’t
meet the interface assumptions.
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Technical Considerations
of Portability

• Classification
– Classify complete applications according to

their environmental interfaces &
requirements

• Specification of portability requirements
must be effective

• how much portability is needed
• what kind of environments will be used
• what costs can be accepted to achieve

portability
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Technical Considerations
of Portability (cont)

• Measurement
– Ways to measure portability-based cost &

effectiveness
• Design

– Portability has significant impact on the
design process

• Cultural Adaptation
– Adapting to the conventions of new

environments & users
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Technical Considerations
of Portability (cont)

• Verification & Validation
– Verification activities, such as reviews, analysis, &

testing are needed to ensure correctness in all
applications & implementations.

• Common Problems With Portability
– OS inconsistencies
– Different compiler options/effects
– Incompatible libraries
– Run-time problems
– Underestimation of integration effort
– Architectural inconsistency
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Real-Time Issues for
Portability

• Timing
• Memory Allocation
• Memory Deallocation
• Dynamic Task Creation
• Scheduling Control
• Synchronization & Communication
• Events & Input/Output
• File Access
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COTS Software
Definitions

• RTCA/DO-178B: Commercially available applications
sold by vendors through public catalog listings. COTS
software is not intended to be customized or
enhanced. Contract-negotiated software developed
for a specific application is not COTS software.

• FAA Research Report: Any software product that is
not developed within a given company for a specific
application for that company.  In particular,
information regarding the software product’s
development and fabrication is not known or not
available to the user of the COTS product. (Krodel)
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Two Classes of COTS

• Class 1 – Integrity Unknown
– No access to software life cycle data
– Level D
– FAA Notice 8110.82 (now 8110.92)

• Class 2 – COTS with Integrity
– Developed using DO-178B
– Software life cycle data exists
– Potentially to Level A
– FAA Draft Notice 8110.RSC

64
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Product Service History
Definition

• A contiguous period of time during
which the software is operated within a
known environment, and during which
successive failures are recorded.  (DO-
178B)

66

Acceptability Depends On

• Configuration management of the
software

• Effectiveness of problem reporting
• Stability and maturity of the software
• Relevance of product service history

environment
• Actual error rates and product service

history
• Impact of modifications



34

67

Attributes To Be
Evaluated

• Service duration length
• Change control during service
• Proposed use versus service use
• Proposed environment to service environment
• Number of significant mods during service

– Hardware mods & software mods
• Error detection capability
• Error reporting capability
• Number of in-service errors
• Amount/quality of service history data available

and reviewed

68

Service History
Conclusions

• Currently, it is hard to make a case for
product service history.

• FAA is sponsoring research in this area.
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Characteristics of Organizations
with Highest Reuse

• Use a product-line approach
• Utilize an architecture which standardizes

interfaces and data formats
• Use common software architecture across

product lines
• Implement a design for manufacturing

approach
• Use domain engineering
• Have a defined software reuse process
• Management understands reuse issues.
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Characteristics of Organizations
with Highest Reuse (cont)

• Have software reuse advocate(s) in
senior management

• Employ state-of-the-art reuse tools and
methods

• Reuse more than just code (e.g.,
requirements and design)

• Trace end-user requirements to the
components which support them

Rine/Sonnerman
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• Before you can reuse something, you
need to:
• Find it
• Know what it does
• Know how to reuse it

~ Tracz ~
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REBOOT – Reuse Maturity
Model (RMM)

• REBOOT = REuse Based on Object
Oriented Techniques

• Implements 5 Levels Like the SEI
Capability Maturity Model
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REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 1 – Initial or Chaotic
– No planned reuse
– Only unintentional reuse occurring

• Level 2 – Repeatable
– Project-to-project reuse
– Limited scope
– No overall reuse strategy
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REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 3 – Defined
– Defined company-wide reuse strategy
– Defined processes allow for ruese

across the company
– Company-wide reuse library
– Each project is evaluated for reuse

potential in accordance with the
company’s reuse strategy
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REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 4 – Managed
– Reuse processes and reusable assets of the

company are controlled and understood in
detail.

• Level 5 – Optimized
– Quantitative feedback
– Continously improve reuse processes &

assets
– Innovative ideas are evaluated and applied
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REBOOT – Reuse Maturity
Model (RMM) (cont)

• Key Reuse Areas
– Reuse commitment
– Project management
– Asset management
– Metrics
– Development process

78
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FAA Reuse-Related
Activities

• Notice 8110.Reuse
• Notice 8110.RSC
• COTS Research Project
• OO Research Project
• Service History Research Project
• Integrated Modular Avionics Team
• Plan for Tool Qual Reuse Policy
• SC-190 Activities

80
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Summary

• There are many things to consider in reuse
• There are many techniques/tools to help
• The following issues must be addressed to be

successful:
– Top level management support
– Modified development process
– Overcoming non-technical inhibitors
– Create an incentive program
– Establish reuse measurements
– Develop reuse guidelines
– Focus on a single domain
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Summary (cont)

• Safety must be a priority
• FAA has several initiatives underway to

enable reuse


